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1
PREVENTING OSCILLATORY LOAD
BEHAVIOR IN A MULTI-NODE
DISTRIBUTED SYSTEM

BACKGROUND

1. Field of the Invention

This disclosure generally relates to techniques for pro-
viding robust load balancing in a distributed system. More
specifically, this disclosure relates to techniques for detect-
ing and preventing oscillatory load behavior in a multi-node
distributed system.

2. Related Art

The proliferation of the Internet and large data sets have
made data centers and clusters of computers increasingly
common. For instance, “server farms” typically combine
large numbers of computers that are connected by high-
speed networks to support services that exceed the capabili-
ties of an individual computer. A designated “load manager”
typically receives incoming service requests for the cluster,
and then distributes the requests across individual nodes
using techniques that strive to maximize the throughput of
the cluster.

Unfortunately, efforts to evenly distribute requests across
a cluster can often lead to oscillatory behavior. For instance,
if one cluster node becomes overloaded, a load manager may
move work from the overloaded node to another node.
However, as a result, the original node may run out of work
and become idle, while the target node in turn becomes
overloaded by the additional transferred work. Hence, re-
balancing attempts may result in nodes oscillating between
idle and overloaded states, leading to inefficient operation
and degraded performance. System administrators some-
times attempt to use heuristic techniques to reduce oscilla-
tion, but such heuristics often do not generalize well, and
thus typically fail under changing operational conditions.

Hence, what is needed are techniques for distributing
requests across a multi-node distributed system without the
above-described problems of existing techniques.

SUMMARY

The disclosed embodiments provide a system that pre-
vents oscillatory load behavior for a multi-node distributed
system. During operation, the system uses a load-balancing
policy to distribute requests to the nodes of the distributed
system. The system determines operational characteristics
for the nodes as they process a set of requests, and then uses
these operational characteristics to compute machine queu-
ing models that describe the machine state of each node. The
system then uses this machine state for the nodes to deter-
mine whether the load-balancing policy and the distributed
system are susceptible to oscillatory load behavior.

In some embodiments, the system uses the gathered
machine queuing models and the specification for the load-
balancing policy to fit a state-space model of the system, and
then determines if the fitted state-space model is susceptible
to oscillatory behavior.

In some embodiments, the system calculates a risk of
oscillatory behavior based on the fitted state-space model
and the current request workload. If the risk exceeds a
specified threshold, the system adjusts the load-balancing
policy to prevent oscillatory load behavior. For instance, in
some embodiments the system may adjust tunable param-
eters for the load-balancing policy to prevent oscillatory
load behavior. In alternative embodiments, the system may
determine that adjusting tunable parameters is insufficient,
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2

and instead may change to a different load-balancing policy
that reduces the risk of oscillatory load behavior.

In some embodiments, the system tracks the incoming
request rate and the request service rate for each node. For
instance, the system can use such tracked information to
build a machine queuing model that describes the average
request queue length and the average queue waiting time for
a node.

In some embodiments, using a fitted state-space model
and per-node machine queuing models facilitates dynami-
cally detecting the risk for oscillatory behavior across appli-
cation and system changes.

BRIEF DESCRIPTION OF THE FIGURES

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 illustrates an exemplary multi-node distributed
system in accordance with an embodiment.

FIG. 2A illustrates oscillatory load behavior for a system
with weak feedback via load-balancing coupling in accor-
dance with an embodiment.

FIG. 2B illustrates oscillatory load behavior for a system
with strong feedback via load-balancing coupling in accor-
dance with an embodiment.

FIG. 3 presents a flow chart that illustrates the process of
choosing a robust load-balancing policy that prevents oscil-
latory load behavior for a multi-node distributed system in
accordance with an embodiment.

FIG. 4 illustrates a partial state graph for a node with three
channels that can execute two types of requests in accor-
dance with an embodiment.

FIG. 5A illustrates a graph that shows how the number of
simultaneously busy channels begins to affect the service
rate at a value k in accordance with an embodiment.

FIG. 5B illustrates the transition graph for a Poisson
arrival flow in accordance with an embodiment.

FIG. 6 illustrates a computing environment in accordance
with an embodiment.

FIG. 7 illustrates a computing device in accordance with
an embodiment.

Table 1 illustrates a set of steady-state state transition
equations for an exemplary node of a distributed system in
accordance with an embodiment.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of a particular application and its
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present invention is not limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a non-transitory com-
puter-readable storage medium, which may be any device or
non-transitory medium that can store code and/or data for
use by a computer system. The non-transitory computer-
readable storage medium includes, but is not limited to,
volatile memory, non-volatile memory, magnetic and optical
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storage devices such as disk drives, magnetic tape, CDs
(compact discs), DVDs (digital versatile discs or digital
video discs), or other media capable of storing code and/or
data now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a non-transitory computer-readable
storage medium as described above. When a computer
system reads and executes the code and/or data stored on the
non-transitory computer-readable storage medium, the com-
puter system performs the methods and processes embodied
as data structures and code and stored within the non-
transitory computer-readable storage medium.

Furthermore, the methods and processes described below
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, a full-
custom implementation as part of an integrated circuit (or
another type of hardware implementation on an integrated
circuit), field-programmable gate arrays (FPGAs), a dedi-
cated or shared processor that executes a particular software
module or a piece of code at a particular time, and/or other
programmable-logic devices now known or later developed.
When the hardware modules are activated, the hardware
modules perform the methods and processes included within
the hardware modules.

Oscillatory Behavior in Multi-Node Distributed Systems

Multi-node server farms typically combine large numbers
of computers that are connected by high-speed networks to
support services that exceed the capabilities of an individual
computer. For instance, a multi-node distributed system can
provide additional performance, scalability, and reliability
for large-scale applications. Such distributed computing
systems typically include a resource manager (or “load
manager”) that attempts to balance the amount of work that
each node receives to maximize the performance of the
system. For example, a load manager may monitor current
resource utilization, provision for future resource usage, and
make resource scheduling recommendations. Note that a
cluster may support a large number of unique services that
execute on hundreds of interconnected computing devices.
Also note that each computing device (or node) in a cluster
may also execute one or more services using a virtual
machine (e.g., in a Java Virtual Machine™; Java Virtual
Machine is a trademark of Oracle America, Inc.).

Efficiently utilizing the available distributed resources of
a cluster can be challenging. One or more dedicated load
managers typically receive a stream of requests on behalf of
the distributed system, and then dispatch the requests to the
nodes of the distributed system. Such requests may vary
depending on the service and request type (e.g., “get data,”
“remove data,” or “run a match query”). Furthermore,
because the capabilities and utilization of the target node
may also vary, the execution time for each request may vary
widely as well. Load managers typically attempt to account
for such variation by using static rules and/or a load-
balancing policy that consider factors such as the current
load, the type of deployment, and machine failures (and/or
limitations) when dispatching requests to nodes. Note that
load-balancing policies may range from basic techniques
(e.g., simplistic round-robin or random request distribution)
to sophisticated predictive scheduling techniques that
employ artificial intelligence techniques.

FIG. 1 illustrates an exemplary multi-node distributed
system. Incoming requests 100 are received by one or more
load managers 102, which then allocate requests 104 to N
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nodes 106 (e.g, computing devices). Each node may queue
such requests until they can be processed and executed by
worker threads (not shown).

Unfortunately, efforts to evenly distribute requests across
a cluster can often lead to oscillatory behavior. The perfor-
mance of overloaded components typically drops signifi-
cantly, so as mentioned above, load managers are often
configured to ensure that work is similarly distributed
among nodes. For instance, upon detecting that one cluster
node has become overloaded, a load manager may move
work from the overloaded node to another node. However,
as a result, the original node may run out of work and
become idle, while the target node in turn becomes over-
loaded by the additional transferred requests. Hence, re-
balancing attempts may result in nodes oscillating between
idle and overloaded states, leading to inefficient operation
and degraded performance.

FIGS. 2A and 2B illustrate exemplary oscillatory load
behavior in a cluster of three interconnected machines with
weak and strong feedback (respectively) via load-balancing
coupling. When the coupling introduced by load balancing
and/or request distributors becomes sufficiently strong, node
loads may begin to oscillate. The amount of load that needs
to be shifted between nodes is typically proportional to the
amount of coupling; a load mismatch between nodes in the
presence of weak coupling may not require many requests to
be shifted between nodes, and hence doesn’t involve much
disturbance to the distributed system. Conversely, strong
coupling typically requires moving many requests between
nodes, and hence often leads to load oscillation.

In FIG. 2B, the nodes of the system initially have equal
loads, but start to oscillate due to high coupling strength. As
a result, at any one time one of the three nodes has minimal
(or no) load, leading to inefficient operation as nodes alter-
nate between being over- and underloaded, and the average
amount of work output for the system drops. Such situations
can lead to energy waste and higher system provisioning
costs.

In FIG. 2A, weaker load-balancing coupling leads to a
more efficient outcome. While the three nodes start out
oscillating, the weaker coupling allows the system to
quickly settle down into an oscillation-free state where all
three nodes operate more efficiently. Note that changing the
strength of coupling may sometimes involve changing only
a single load-balancing parameter.

Detecting and avoiding harmful load oscillation in multi-
server distributed systems can substantially benefit system
efficiency. Unfortunately, load oscillation is sometimes
viewed subjectively, and is often difficult to manage. For
instance, some experienced system administrators with
insight into distributed system internals and operating char-
acteristics may view one set of load behavior patterns as
oscillatory and performance-degrading, while other system
administrators may find such patterns to be normal and
unalarming. Even when load oscillation is determined to be
an issue, existing load-balancing efforts typically do not
consider oscillation. Hence, efforts to curb oscillation often
involve patching in heuristic techniques that attempt to
avoid undesirable behavior indirectly based on a set of
observed effects and characteristics. Such techniques usually
do not generalize well, and thus typically fail under chang-
ing operational conditions. In the worst case, such heuristics
may improperly treat normal dynamic behavior as oscilla-
tory behavior, which can further degrade performance.

Some approaches that seek to reduce load-balancing-
based oscillation are only applicable to weight-based load
balancing environments (e.g., as disclosed in U.S. Pat. No.
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7,890,624, issued 15 Feb. 2011), and limit the magnitude of
weight change by heuristic metrics composed of various
historic system parameters. Heuristic “oscillation” metrics
that are based on the variability of weight changes over a
certain historical window are rather subjective, and could
lead to improperly treating normal dynamic behavior as
being oscillatory. Other load-balancing techniques (e.g., as
disclosed in (1) U.S. Pat. No. 6,128,642, issued 3 Oct. 2000,
(2) U.S. Pat. No. 7,665,092, issued 16 Feb. 2010, and (3)
U.S. Pat. No. 5,867,706, issued 2 Feb. 1999) do not analyze
nor consider the possibility of load oscillation due to load-
balancing rules, which typically severely limits their appli-
cability in fielded applications and/or noticeably penalizes
performance.

Embodiments of the present invention enable robust load
balancing for multi-node distributed systems that avoids
and/or prevents load oscillation. The disclosed techniques
facilitate evaluating various load-balancing policies in the
context of a multi-node distributed system, detecting con-
ditions and/or properties that may lead to load oscillation,
and then tuning load-balancing techniques to avoid oscilla-
tory load behavior under current operating conditions.
Providing Robust [Load Balancing that Prevents Oscillatory
Behavior

Successtully preventing and correcting for oscillatory
load behavior involves formally defining and detecting the
onset of such behavior. Embodiments of the present inven-
tion employ formal mechanisms that represent a distributed
system using a state-space approach and use a formal
definition of oscillatory load behavior that considers both
specific system properties and the feedback mechanisms
introduced by load-balancing techniques.

In some embodiments, a load manager considers the full
set of interconnected nodes of a distributed system as a
single (complex) system. Individual nodes track their
request arrival rates and the service times for a plurality of
request types, and then compute both their average queue
length and the average response time. A load manager
collects such information for each node of the distributed
system, and measures overall productivity by calculating
how many requests are being served simultaneously. The
load manager then evaluates the computed characteristics
and available load-balancing policies using a system-level
state-space representation that models load balancing as a
feedback mechanism. The load manager can use these
models to dynamically compare the performance of different
load-balancing policies, and then chooses a robust load-
balancing policy that reduces the risk of oscillatory load
behavior, thus improving overall system performance. Such
capabilities facilitate adapting load-balancing policies over
time in response to request, load, application, and system
changes, thereby ensuring that the distributed system is not
adversely affected by load oscillation. Note that while the
above description describes performing certain calculations
and modeling in the nodes and/or load manager, such
operations are by no means limited to the described com-
ponents, and may be performed by a range of system
entities.

FIG. 3 presents a flow chart that illustrates the process of
choosing a robust load-balancing policy that prevents oscil-
latory load behavior for a multi-node distributed system.
During initialization, the system first selects an active load-
balancing policy (operation 300) based on the characteristics
of the distributed system (e.g., the deployment and capa-
bilities of nodes) and expected operational factors (e.g., the
set of supported applications, types of requests, etc.). If such
information is not available, the system may use a default
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load-balancing policy. Next, the system adjusts the param-
eters of the selected load-balancing policy (operation 310)
based on the available information. As before, if no infor-
mation is available, the system may use a default set of
load-balancing parameters.

After initializing the load-balancing policy, the system
begins servicing requests. During operation, the system
acquires (e.g., monitors and collects) operational character-
istics for each node of the distributed system (operation
320). These characteristics can include, but are not limited
to: (1) the arrival rates of various request types for each
node; and (2) the request service rate for each request type
for each node. The system uses this collected information to
compute machine queuing models that describe the machine
state of each node (operation 330) (e.g., in terms of average
queue length and average waiting time in the queue). The
system then uses these machine queuing models and the
load-balancing policy to determine whether the load-balanc-
ing policy and the multi-node distributed system are sus-
ceptible to oscillatory load behavior (operations 340-350).
More specifically, the system can feed the machine state
information in the machine queuing models and the active
load-balancing policy into a system identification module
that fits a state-space model of the entire distributed system
(operation 340). This state-space model describes the overall
distributed system of interconnected nodes with high fidel-
ity, and includes a feedback mechanism to represent load
balancing (see the section on fitted state-space models
below). The system can then analyze the fitted state-space
model (including the active load-balancing policy) to deter-
mine whether the distributed system and active load-balanc-
ing policy are susceptible to oscillatory behavior (operation
350).

After analyzing the fitted state-space model, the system
weighs the risk of oscillatory behavior (operation 360) (e.g.,
by comparing a set of conditions against a threshold). For
instance, the fitted state-space model may indicate that the
system is susceptible to oscillatory behavior, but the current
request load may be so light that the actual risk is quite low.
If this is the case, the system may continue to operate using
the existing load-balancing policy, and perform ongoing
monitoring (operation 370). If, however, the fitted state-
space model indicates that the system is susceptible to
oscillatory behavior, and the risk of such behavior is deter-
mined to be high, the system may determine whether adjust-
ing the parameters of the load-balancing policy (e.g., to
weaken the feedback) might sufficiently lower the risk of
oscillatory load behavior (operation 380). If so, the system
“tunes” the parameters of the active load-balancing policy
(operation 310), and continues operation with the adjusted
load-balancing policy. If adjusting these parameters is insuf-
ficient, the system selects a new load-balancing policy
(operation 300). Note that situations may arise where all of
the available load-balancing policies have a substantial risk
of oscillatory load behavior; in this case, the system may
choose the most robust of the available load-balancing
policies and continue to monitor and adjust this policy based
on changing operational conditions. In some embodiments,
the system may also be configured to develop and evaluate
new load-balancing policies if the set of existing load-
balancing policies all suffer from substantial load oscilla-
tion.

Note that different load-balancing policies may have
different behavior for different loads, and that typically no
specific load-balancing policy can outperform all other
load-balancing policies for all possible sets of loads. Hence,
the ability to evaluate load-balancing policies during opera-
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tion and switch to a load-balancing policy that meets speci-
fied performance objectives and does not cause load oscil-
lations for the given load characteristics facilitates efficiently
utilizing available hardware and software resources. In some
embodiments, the load manager may be configured to weigh
a set of trade-offs to achieve a plurality of goals while
selecting a load-balancing policy. For instance, the load
manager may be configured to consider a weighted sum of
individual performance objectives or to optimize a second-
ary subset of goals after meeting a primary subset of goals.

The following sections describe aspects of determining
machine queuing models and the overall state-space model
in more detail.

Describing the Machine State of Nodes

As described above, the disclosed load-managing tech-
niques build a fitted state-space model that describes the
overall distributed system of interconnected nodes. Achiev-
ing an accurate overall system model depends on accurately
modeling the characteristics of each individual node. In
some embodiments, each node is modeled using a queuing
theory model (also referred to as a QT model). For instance,
the state of each node can be expressed in terms of an
expected waiting time for queued requests, W, and an
average number of service requests in the queue, L.

In some embodiments, each node receives k independent
Poisson flows as inputs, where lambda (A) indicates an
average arrival rate. These k flows have parameters A,
(where i=1,2.3, . . ., k), and the i-th flow consists of requests
for a specific i-type of service. A node includes ¢ service
channels, each of which can serve any of the k flows.
Requests are served in order of arrival, and requests that
arrive when all channels are busy are queued to wait for an
available channel. Request service times are exponentially
distributed with the parameter p/ (where i=1,2,3, ..., k; and
7=1,2,3, ..., ¢), which depends on the types of requests and
on how many channels are working simultaneously. Note
that the service time does not depend on which channel
executes a given request. The states of a node can be
characterized by the probability of the number of requests of
each type in the system (e.g., requests that are currently
being executed or queued).

FIG. 4 illustrates a partial state graph for a node with three
channels that can execute two types of requests. In this
graph, the set of states include:

State (0), where the system is free from requests for

service;

States (a) and (b), where the system has one request, and

this request is being serviced;

States (aa), (ab), and (bb), where the system has two

requests, and these requests are being serviced;

States (aaa), (aab), (abb), and (bbb), where the system has

three requests, and these requests are being serviced;

States (aaaa), (aaab), (aaba), (aabb), (abba), (abbb),

(bbba), and (bbbb), where the system has four requests,
three of which are being serviced, while one is queued;

States (aaaaa), (aaaab), . . ., (bbbba), and (bbbbb) (not

shown in FIG. 4), where the system has five requests,
three of which are being serviced, while two are
queued;

etc.

FIG. 4 illustrates the state-to-state transitions for the illus-
trated states. Note that the graph in FIG. 4 only shows a
queue length of two; the number of states grows exponen-
tially with a positive growth factor equal to the number of
request types.

Note that the transitions between states can be represented
as a continuous stochastic Markov process and described
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using a set of Chapman-Kolmogorov equations. Table 1
shows a set of such equations for a steady-state of the
exemplary node of FIG. 4, where P, (1) is the probability of
a state (aab) at time t. Numerically solving these equations
gives the desired parameters for the node. Note that, as
mentioned above, the number of states can become prohibi-
tively large as the number of request types increases. The
number of system states, given r types of requests, ¢ chan-
nels, and a queue length L is given by the following
expression:

r+c-1
)
¢

L (r+c-1!
T oelr-1)

TABLE 1

(gt he) *P_—=p, * Pt * Py
(Ha+hg+hp) *Po=dhg* P =+ 2%, * P+, * Py
(Mo + Mgt hy) *Pp=hy P -, * Py +27% 1, * Py
QRF P+ hg+ M) FPog =D * Pt 3% Py * P + 115, * Pryy
(Mot Hathgthp) *Pop=hy * Pt A, *Pp+ 2% p, *
Paap + 2% 1y * Py,
QFpy+hg+ M) *Prp=dy * Pyt p, * Py + 3 7% 11, * Py
G F pg+ Mg+ hp) * P =g * Py + 3% 1% Prgaa + 15 ™ Prta
(Mo + 2% Pyt hg + ) * Prog =0y * P+ by * Py +
3% U * Prgar + 2% P ® Prgpa + 15 * Pogin + 2% 1y * Pgps
QFpp+pg+ Mg+ M) * Py = Ay * P+ A, * Py +
2% Uy * Paaps + Ha ™ Papra +2 % 1 * Popis + 3 % 1y * Prpps
(B pp+ g+ hg) * Prpp=hy * Pop g ™ Pappp + 3 1y ™ Py
+ A, + = + +
3% g+ kg + M) ¥ Pogaa =R * Poga + 3% 1o ™ Prggaa + 1 * Prgpaa
(B ot hgt he) * Poap =M * Prga + 3 % 1y ™ Prgar + 1o * Prrar
(Mo + 2% ot Ayt Mp) * Prgpg = hg * Pogp +3 % *
2% Uy * Pogaa + M * Pagbba + 2 1o * Poppaa
(o + 2% pg+ Rt he) * Prgpp =y * Py + 3% 1, * P +
2% Uy * Pgpar + M * Pogns + 2 1 * Poppas
QR o+ pathgt M) * Poppg =g * Popp + 2%, *
Ho ™ Pabbaa + 2% s * Popna + 3 1 * Poppaa
QFpp+pg+ A+ he)* Py =y * Popp + 2% 1, * Py, +
Ho ™ Pappar + 2% 1y * Popins + 3 1 * Poppas
(B pp+hg+ ) * Prppg =g ™ Prps + 1o ™ Pappng + 3% s * Prprpa
(B pp + g+ he) * Prppp =M ™ Prps + 1o ™ Papary + 3% 1 * Prprss,
G* 1) * Praaa = Mg * Pogan
G 1) * Prgaar = M * Prgaa
G ™ 1) * Prgapa = Mo * Pogar
(3™ 1) * Pogars = My * Pagan
(o + 2% 100) * Prgpaa = Mo * Prgpg
(M + 27 1) * Pogpar = My * Prgra
(M + 27 1) * Pogpra = Mo ™ Paans,
(Mo + 27 ) * Pogprs = My * Prans,
Q7 pp+ 1) * Poppaa = Ao * Prppg
(27 i+ 1) * Poppar = My * Pappg
(27 i+ 1) * Popprg = Mo ™ Papss
(27 pp + 1) * Papsrs = My * Papss
G 1) * Prppag = Mg * Py
(3™ 1) * Prppas = My * Pring
(3™ 1) * Prppra = Mo ™ Prors
G 1) * Prppy = My * Prpp,

Pogara +

Poabra +

In some embodiments, the average queue length and
average waiting time are computed for the case in which the
productivity of service channels (e.g., the execution rate)
depends on the number of simultaneously busy channels
(i.e., parameter u is a function of simultaneously busy
channels). The number of simultaneously working channels
starts to have an effect at the number k, where 1=<k=c (as
illustrated in FIG. 5A). Starting at point k, the curve
smoothly decreases and achieves its value 1 at point c. From
the requirement of smoothness at point k, it follows that the
curve is concave. Hence, the curve lies above its chord, and
so the chord can be used for the estimate of values of the
curve. In this environment, the increment of decreasing is
a=(y—-w.)/(c=k), and p_=u,—(c-k)c.. The steady-state equa-
tions for this case are:
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APo=oP)
(Mitg)P,=NP,_ +(i+1)uoP;, |, (Where 1=is(k-1))

Ot (i) (=10 Py s =APr .+ (4 D) (o= (H 1) )Py
1, (where O=is(c-k-1))

(WGP =N i 1AL v 121

Solving these equations in terms of Py, where
A A
— =po and — =p,
Ho Cite

one has:

i
P;=%P0,1<i£k

ki
b
Pusy = ——20 Py 1<is(e—k)
(/<+i)!_l_l1 (1o — ja)
-
i kyc—k
A
Plewy = —22F Po,i>0
!l (o — o)
J=1
Then,
Pl =
i=c—k—-1 . :
ohact A (po)’

&
+ o ]

c—k i
M -pall 5 (o= j) 5 G+ D] (o= )
i= =

and the average queue length is given by:

A ol

L -
ek ]

cl(l = pe) _l'l1 (¢0 — jo)
-

a = Py.

Note that, in practice, having the precise arrival parameter
values for each request type (as well as the execution time
parameters for each request type) is unlikely. Hence, in some
embodiments, the system computes analytical upper and
lower bounds (e.g., pessimistic and optimistic estimates) for
the key parameters (e.g., the average queue length and
average waiting time) that will be used in the system-level
state-space model. Note that a pessimistic estimate of such
parameters may be more acceptable than estimates made on
the basis of approximate data, since pessimistic calculations
may be justified with great accuracy.

When computing an upper bound, the average service
time for each request type may be assumed to be the same,
and equal to the average service time of the request
requiring the maximum execution duration (ie., p/=p=
VT, oxq1 25, . . ., »)- Obtaining the lower bound involves
considering the execution time that corresponds to the
request type with the smallest execution duration. This
technique does not distinguish between different arrival
flows, and follows the assumption that the system input is a
Poisson flow with parameter
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i

(where k is the number of different request types), which is
illustrated by the transition graph in FIG. 5B. This graph is
described by a set of linear different equations (with respect
to t):

dPy(1)

= —APy(0) + Py ()
dPi (1)
T =~ PO + APo() + 24ePa(0)
dPein(®
S = (At )Pt 0) 4 APeset (1) 4 CHPe (.

An equilibrium condition can be established for A/u<l1. A
time-independent steady-state equilibrium can be obtained
by setting the derivatives with respect to time t=0 and
solving the resulting steady-state equations:

APy = 4Py

(l + /,()Pl = APO + 2},(P2

A+ (c+m)Poin = APein-1 + cftPeinis-

Solving each equation regarding P, gives:

A
P ="P
u
1 A ctn
Pen=gailz) o

e
o]
It

T
>

as

(cp)

i!

-1 -1
(cp)
P"‘[ Yad-p|
=0
A
where p = —.
cp

Hence, the average number of queued requests is

_ plep)*
=g’
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and the average waiting time in the queue is

_ L, _ plep)

w, =2 = )
il —p2 °

772

Note that the above techniques accurately model the
number of independent processing capabilities (e.g., active
channels) available in a given node. The request processing
rate (1) for a given node will be higher for nodes that include
several processors or multi-core processors that can execute
multiple requests in parallel (in comparison with a multi-
threaded processor, which may use the thread abstraction to
use local resources more efficiently, but can only actively
execute one request at a given time). Hence, the machine
queuing model for a given node can accurately model and
convey such different characteristics using the above-de-
scribed values and techniques.

Using Fitted State-Space Models to Determine Risk of
Oscillatory Behavior

As described above, a fitted state-space model provides a
general overall model for a dynamic distributed system that
consists of interconnected elements with feedback. Data is
collected from individual nodes of the distributed system to
calculate the specific state variables for each node (e.g., the
average queue lengths and average execution times for each
node), and these variables are then input into the state-space
model. Load-balancing policies can introduce weak or
strong feedback into this system, and both load-balancing
policies and the properties of individual systems can trigger
conditions that lead to oscillatory phenomena in the distrib-
uted system.

Note that fitted state-space models can only approximate
real systems to a certain degree; building a model that
exactly describes a distributed system is typically infeasible.
For instance, the machine queuing model used to describe
the states of each node may not always be easy to solve
and/or the number of states may become prohibitively large,
in which case numerical methods (and/or different modeling
formulas) may be needed to approximate the needed values.
Such models may also be inaccurate for other reasons (e.g.,
there may be unexpected correlations in input traffic). How-
ever, modeling efforts that include approximations and
potential errors can still often provide insights that can
significantly improve performance.

In some embodiments, the distributed system is modeled
using a state-space model of a load-balanced group of
dynamic systems:

X=flx,u)
y=gx)

u=h(y)

where x denotes a state vector of a system of n machines, y
denotes output, and u denotes the feedback mechanism. A
linear state-space model for this distributed system can be
expressed as:

X=Ax+Bu
y=Cx
u==2y; ()

In this representation, the cluster of interconnected systems
becomes oscillatory when the individual systems possess
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stable non-minimum phase-transfer functions (e.g., poles<l1,
zeros>=1) and the maximum Eigen value of the feedback
topology matrix

Yk

k
Z)’li Y12
i=1
k
—Y21 Z)’zi
I= i=1

—Y2%

k

. Z)’k;

i=1

—Yk1 —Yi2

exceeds a certain threshold

max(eig(I)>Y.

Note that this threshold corresponds to the threshold that can
be used to weigh the risk of oscillatory behavior in FIG. 3.

The model parameter matrices A, B, and C can be
constructed by observing the distributed system’s operation
and by fitting the model into the accumulated data with
either no load-balancing policy or a specific load-balancing
policy activated. Estimated system parameters can be com-
pared against conditions for emergence of oscillatory behav-
ior to determine the most robust load-balancing policy for a
set of operating conditions.

In some embodiments, the model parameters are deter-
mined by running simulations with values of x and y that
have been generated using a detailed model of node that
processes requests with specified arrival process character-
istics. Various load-balancing policies can be activated for
these values to determine appropriate parameters.

In some embodiments, the state-space model is used to
evaluate the characteristics of the distributed system and the
active load-balancing policy in an attempt to match a set of
conditions that indicate whether the system has acceptable
load oscillation. The state-space model specifies those con-
ditions explicitly; the two conditions that can lead to oscil-
latory behavior are: (1) the presence of a specific feedback
mechanism; and (2) the parameters of the distributed system
itself. Once the distributed system has been fitted to a
state-space model, these two conditions can be checked
against the threshold to determine if the system is suscep-
tible to oscillatory behavior. In some embodiments, using a
state-space model provides conditions leading to oscillatory
load behavior when each machine is globally stable but
locally unstable (e.g., the system is stable for certain con-
ditions, but the inverse may become unstable) and the
feedback is sufficiently strong.

In some embodiments, the above-described techniques
can be used to provide a barrier for malicious attacks that
exploit load-balancing mechanisms. For instance, the sys-
tem may detect such an attack based on the request load’s
impact on the state-space model, and in response switch (or
recommend switching) to a more robust load-balancing
policy that is not susceptible to the specific exploits.

In summary, embodiments of the present invention facili-
tate detecting and preventing oscillatory load behavior in a
multi-node distributed system. The described embodiments
enable load managers to detect unfavorable combinations of
load-balancing settings, system properties, and natural load
perturbations, and react appropriately. Unlike heuristics,
fitted node- and system-level models provide a general
solution that can accurately detect susceptibility to oscilla-
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tory behavior across system and load changes. Load oscil-
lation is a significant contributor to performance degradation
in distributed systems, and hence such techniques can sub-
stantially improve system performance.

Computing Environment

In some embodiments of the present invention, techniques
for detecting and preventing oscillatory load behavior can be
incorporated into a wide range of computing devices in a
computing environment. For example, FIG. 6 illustrates a
computing environment 600 in accordance with an embodi-
ment of the present invention. Computing environment 600
includes a number of computer systems, which can gener-
ally include any type of computer system based on a
microprocessor, a mainframe computer, a digital signal
processor, a portable computing device, a personal orga-
nizer, a device controller, or a computational engine within
an appliance. More specifically, referring to FIG. 6, com-
puting environment 600 includes clients 610-612, users 620
and 621, servers 630-650, network 660, database 670,
devices 680, and appliance 690.

Clients 610-612 can include any node on a network that
includes computational capability and includes a mechanism
for communicating across the network. Additionally, clients
610-612 may comprise a tier in an n-tier application archi-
tecture, wherein clients 610-612 perform as servers (servic-
ing requests from lower tiers or users), and wherein clients
610-612 perform as clients (forwarding the requests to a
higher tier).

Similarly, servers 630-650 can generally include any node
on a network including a mechanism for servicing requests
from a client for computational and/or data storage
resources. Servers 630-650 can participate in an advanced
computing cluster, or can act as stand-alone servers. For
instance, computing environment 600 can include a large
number of compute nodes that are organized into a com-
puting cluster and/or server farm. In one embodiment of the
present invention, server 640 is an online “hot spare” of
server 650.

Users 620 and 621 can include: an individual; a group of
individuals; an organization; a group of organizations; a
computing system; a group of computing systems; or any
other entity that can interact with computing environment
600.

Network 660 can include any type of wired or wireless
communication channel capable of coupling together com-
puting nodes. This includes, but is not limited to, a local area
network, a wide area network, or a combination of networks.
In one embodiment of the present invention, network 660
includes the Internet. In some embodiments of the present
invention, network 660 includes phone and cellular phone
networks.

Database 670 can include any type of system for storing
data in non-volatile storage. This includes, but is not limited
to, systems based upon magnetic, optical, or magneto-
optical storage devices, as well as storage devices based on
flash memory and/or battery-backed up memory. Note that
database 670 can be coupled: to a server (such as server
650), to a client, or directly to a network. In some embodi-
ments of the present invention, database 670 is used to store
information that may later be stored in unused bits of a
memory pointer. Alternatively, other entities in computing
environment 600 may also store such data (e.g., servers
630-650).

Devices 680 can include any type of electronic device that
can be coupled to a client, such as client 612. This includes,
but is not limited to, cell phones, personal digital assistants
(PDAs), smartphones, personal music players (such as MP3
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players), gaming systems, digital cameras, portable storage
media, or any other device that can be coupled to the client.
Note that, in some embodiments of the present invention,
devices 680 can be coupled directly to network 660 and can
function in the same manner as clients 610-612.

Appliance 690 can include any type of appliance that can
be coupled to network 660. This includes, but is not limited
to, routers, switches, load balancers, network accelerators,
and specialty processors. Appliance 690 may act as a gate-
way, a proxy, or a translator between server 640 and network
660.

Note that different embodiments of the present invention
may use different system configurations, and are not limited
to the system configuration illustrated in computing envi-
ronment 600. In general, any device that includes memory
and 1/O pathways may incorporate elements of the present
invention.

FIG. 7 illustrates a computing device 700 that includes a
processor 702 and a memory 704. Computing device 700
also includes a load-balancing mechanism 706 and a deter-
mining mechanism 708. Computing device 700 uses load-
balancing mechanism 706 and determining mechanism 708
to prevent oscillatory load behavior in a multi-node distrib-
uted system.

During operation, computing device 700 uses load-bal-
ancing mechanism 706 to distribute requests to the nodes of
the distributed system. Computing device 700 uses proces-
sor 702 and determining mechanism 708 to determine
operational characteristics for the nodes as they process a set
of requests, and determining mechanism 708 uses these
operational characteristics to compute machine queuing
models that describe the machine state of each node. Deter-
mining mechanism 708 then uses this machine state for the
nodes to determine whether the load-balancing policy and
the distributed system are susceptible to oscillatory load
behavior.

In some embodiments of the present invention, some or
all aspects of load-balancing mechanism 706 and/or deter-
mining mechanism 708 can be implemented as dedicated
hardware modules in computing device 700. These hard-
ware modules can include, but are not limited to, processor
chips, application-specific integrated circuit (ASIC) chips,
field-programmable gate arrays (FPGAs), memory chips,
and other programmable-logic devices now known or later
developed.

Processor 702 can include one or more specialized cir-
cuits for performing the operations of the mechanisms.
Alternatively, some or all of the operations of load-balancing
mechanism 706 and/or determining mechanism 708 may be
performed using general-purpose circuits in processor 702
that are configured using processor instructions. Thus, while
FIG. 7 illustrates load-balancing mechanism 706 and/or
determining mechanism 708 as being external to processor
702, in alternative embodiments some or all of these mecha-
nisms can be internal to processor 702.

In these embodiments, when the external hardware mod-
ules are activated, the hardware modules perform the meth-
ods and processes included within the hardware modules.
For example, in some embodiments of the present invention,
the hardware module includes one or more dedicated circuits
for performing the operations described below. As another
example, in some embodiments of the present invention, the
hardware module is a general-purpose computational circuit
(e.g., a microprocessor or an ASIC), and when the hardware
module is activated, the hardware module executes program
code (e.g., BIOS, firmware, etc.) that configures the general-
purpose circuits to perform the operations described above.
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The foregoing descriptions of various embodiments have
been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention. The scope of the
present invention is defined by the appended claims.
What is claimed is:
1. A method comprising:
using a load-balancing policy to distribute requests to
nodes of a multi-node distributed system;

determining operational characteristics for two or more
nodes of the multi-node distributed system as the two
or more nodes process a set of requests, wherein
determining operational characteristics for a node com-
prises tracking an incoming request rate and a request
service rate for the node;

using the operational characteristics to compute machine

queuing models that describe a machine state of the two
or more nodes; and

determining, by computer, from the machine state for the

nodes whether the load-balancing policy and the multi-
node distributed system are susceptible to oscillatory
load behavior.

2. The method of claim 1, wherein determining whether
the load-balancing policy and the multi-node distributed
system are susceptible to oscillatory load behavior further
comprises:

using the machine queuing models and the load-balancing

policy to fit a state-space model of the system; and
determining if the fitted state-space model is susceptible
to oscillatory behavior.

3. The method of claim 2, wherein determining if the
fitted state-space model is susceptible to oscillatory behavior
further comprises:

calculating a risk of oscillatory behavior based on the

fitted state-space model and the current request work-
load; and

if the risk exceeds a specified threshold, adjusting the

load-balancing policy to reduce the risk of oscillatory
load behavior for the multi-node distributed system.

4. The method of claim 3, wherein adjusting the load-
balancing policy comprises adjusting tunable parameters for
the load-balancing policy.

5. The method of claim 3, wherein adjusting the load-
balancing technique comprises:

determining that adjusting tunable parameters for the

load-balancing policy is insufficient to prevent oscilla-
tory load behavior for the multi-node distributed sys-
tem; and

changing to a different load-balancing policy that prevents

oscillatory load behavior for the multi-node distributed
system.

6. The method of claim 1, wherein computing the machine
queuing model for the node further involves using the
incoming request rate and the request service rate for the
node to calculate an average request queue length and an
average queue waiting time for the node.

7. The method of claim 6, wherein using the fitted
state-space model and per-node machine queuing models
facilitates dynamically detecting the risk for oscillatory
behavior in the multi-node distributed system across appli-
cation and system changes.

8. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method, the method comprising:
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using a load-balancing policy to distribute requests to
nodes of a multi-node distributed system;

determining operational characteristics for two or more
nodes of the multi-node distributed system as the two
or more nodes process a set of requests, wherein
determining operational characteristics for a node com-
prises tracking an incoming request rate and a request
service rate for the node;

using the operational characteristics to compute machine
queuing models that describe a machine state of the two
or more nodes; and

determining from the machine state whether the load-
balancing policy and the multi-node distributed system
are susceptible to oscillatory load behavior.

9. The non-transitory computer-readable storage medium
of claim 8, wherein determining whether the load-balancing
policy and the multi-node distributed system are susceptible
to oscillatory load behavior further comprises:

using the machine queuing models and the load-balancing
policy to fit a state-space model of the system; and

determining if the fitted state-space model is susceptible
to oscillatory behavior.

10. The non-transitory computer-readable storage
medium of claim 9, wherein determining if the fitted state-
space model is susceptible to oscillatory behavior further
comprises:

calculating a risk of oscillatory behavior based on the
fitted state-space model and the current request work-
load; and

if the risk exceeds a specified threshold, adjusting the
load-balancing policy to reduce the risk of oscillatory
load behavior for the multi-node distributed system.

11. The non-transitory computer-readable storage
medium of claim 10, wherein adjusting the load-balancing
policy comprises adjusting tunable parameters for the load-
balancing policy.

12. The non-transitory computer-readable storage
medium of claim 10, wherein adjusting the load-balancing
technique comprises:

determining that adjusting tunable parameters for the
load-balancing policy is insufficient to prevent oscilla-
tory load behavior for the multi-node distributed sys-
tem; and

changing to a different load-balancing policy that prevents
oscillatory load behavior for the multi-node distributed
system.

13. The non-transitory computer-readable storage
medium of claim 8, wherein computing the machine queu-
ing model for the node further involves using the incoming
request rate and the request service rate for the node to
calculate an average request queue length and an average
queue waiting time for the node.

14. The computer-implemented method of claim 13,
wherein using the fitted state-space model and per-node
machine queuing models facilitates dynamically detecting
the risk for oscillatory behavior in the multi-node distributed
system across application and system changes.

15. A computing device, comprising:

a processor;

a load-balancing mechanism configured to use a load-
balancing policy to distribute requests to nodes of a
multi-node distributed system; and

a determining mechanism configured to use operational
characteristics to compute machine queuing models
that describe a machine state for two or more nodes of
the multi-node distributed system;
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wherein the machine state information is computed based
on operational characteristics gathered for the two or
more nodes as the two or more nodes process a set of
requests, wherein gathering operational characteristics
for a node comprises tracking an incoming request rate
and a request service rate for the node; and

wherein the determining mechanism is further configured

to determine from the machine state for the two or more
nodes whether the load-balancing policy and the multi-
node distributed system are susceptible to oscillatory
load behavior.

16. The computing device of claim 15, wherein the
determining mechanism is further configured to determine if
the multi-node distributed system is susceptible to oscilla-
tory load behavior by:

using the machine state information and the load-balanc-

ing policy to fit a state-space model of the system; and
determining if the fitted state-space model is susceptible
to oscillatory behavior.

17. The computing device of claim 16, wherein the
determining mechanism is further configured to:

calculate a risk of oscillatory behavior based on the fitted

state-space model and the current request workload;
and

if the risk exceeds a specified level, adjust the load-

balancing policy to reduce the risk of oscillatory load
behavior for the multi-node distributed system.
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